Bjorken and Ellis-Jaffe Sumrules from R-evolution

Ambar Jain Carnegie Mellon University

arxiv: 0908.3189 (hep-ph) + work in progress with Andre Hoang, Ignazio Scimemi and Iain W. Stewart

Outline

- Review of theory and expt. results
- Renormalon problem in MS
- New MSR scheme and R-evolution
- Fits for Power corrections in MSR (and MS)

Theory Review

Ellis-Jaffe Sum Rule (MS Scheme)

OPE for the Nachtmann moment of the nucleon structure function

Ellis, Jaffe (1973) Nachtmann (1973)

$$M_1^{p/n}(Q) = \left[\pm \hat{C}_B(Q) \left(\frac{1}{12} g_A + \frac{1}{36} a_8 \right) + \hat{C}_0(Q) \frac{\hat{a}_0}{9} \right]$$
 twist 2

$$+rac{1}{Q^4}\Big[\pm h_B+h_0\Big]$$
 twist 6

- Renormalization scale independent Wilson coefficients and matrix elements
- $\bar{C}(Q,\mu)\bar{\theta}(Q,\mu) = \hat{C}(Q)\hat{\theta}$
- At twist 2: matrix elements of (flavor) nonsinglet axial current
- $J_{\mu}^{5a} = \bar{\psi}\gamma_{\mu}\gamma^5 t^a \psi(x)$
- At twist 4: reduced matrix elements of $R^a_{2\sigma} = g\psi G_{\sigma\rho}\gamma^{\rho}t^a\psi$ for details, see for example: Campanario, Pineda (2005)
- twist 6: important to fit the data

Theory Review

Bjorken Sum Rule (MS Scheme)

$$M_1^B \equiv M_1^p(Q) - M_1^n(Q) = \hat{C}_B(Q) \frac{g_A}{6} - \frac{4[\alpha_s(Q)]^{\gamma_0^{ns}/(2\beta_0)}}{27Q^2} \hat{f}_3 + \frac{1}{Q^4} h_B$$
 twist 2 twist 4 twist 6

For EJ & Bj Sum rules

Wilson Coefficients at twist-2 are known to four loops

Larin & Vermaseren (1991) Larin, Ritbergen & Vermaseren (1997)

Baikov, Chetyrkin & Kuhn (2010)

- g_A is the neutron beta-decay constant $g_A = 1.2695 \pm 0.0029$
- a_8 is the hyperon decay constant $a_8 = 0.572 \pm 0.019$

Campanario, Pineda (2005)

- other matrix elements need to be fitted from the data
- data is available for wide range of Q² values

Data

Ellis-Jaffe Sum Rule

Data

Bjorken Sum Rule

Renormalons

in a snapshot

for a detailed review, See Beneke (1999)

- Factorial growth in pert. series
- $C = \sum_{n} a_n \alpha_s^{n+1}$

 $a_n \sim n!$

- Arise due to IR-sensitivities in the loopintegral: in MS IR-region is included in the loop integrals
- can be calculated to all orders in pert. theory
 with large n_f approximation
- strength of the renormalon ambiguity can be quantified perturbatively

 Hoar

perturbative

$$C = P_p \Lambda_{\text{QCD}}^p \times \text{div.integral}$$

Hoang, AJ, Stewart, Scimemi (2008)

Test for renormalon

via renormalon sum rule

Hoang, AJ, Scimemi, Stewart (to appear)

same is true for C₀

Finiteness of Observable

renormalon cancellations in OPE

 renormalons in Wilson coefficients cancel against higher twist matrix elements

Luke, Manohar, Savage (1994)

Examples where this happens:

- R-ratio
- heavy meson mass-splitting (B-B* and D-D*)
- Ellis-Jaffe & Bjorken sum rule

MSR Scheme

a solution to the problem

- subtract the asymptotic growth from Wilson coefficients
- add it back to the corresponding matrix element at higher twist

$$C_i^{\text{MSR}}(Q, R) = \hat{C}_i(Q) - \frac{R^2}{Q^2} \frac{\hat{C}_1(Q)}{\hat{C}_1(R)} \left\{ \hat{C}_0(R) - [\hat{C}_0(R)]_{LL} \right\}$$

$$f_i^{\text{MSR}}(R) = \hat{f}_i + \frac{R^2}{Q^2} \frac{a_i}{\hat{C}_1(R)} \left\{ \hat{C}_0(R) - [\hat{C}_0(R)]_{LL} \right\}$$

R is the IR subtraction scale in the Wilson coefficient $(\Lambda_{QCD} \lesssim R)$

MSR Scheme

scholium

- both Wilson coefficient and matrix element are now free of the renormalon ambiguity
- overall OPE does not change but gives reliable predictions, converges faster.
- power corrections will be of their true size ($\sim\Lambda_{QCD}$) and won't depend on the order in the perturbation theory
- new MSR OPE has features of Wilsonian OPE, i.e.,
 Wilson coefficients contain power like terms
- matrix elements in MSR and MS are perturbatively related

R-evolution

Hoang, AJ, Scimemi, **Stewart** (2008)

resumming IR-logs in Wilson coefficients

$$R\frac{d}{dR}C_0(Q,R) = -\frac{R^2}{Q^2}\hat{C}_1(Q)\gamma[\alpha_s(R)] \qquad \begin{array}{c} \text{Solution of this} \\ \text{equation resums large} \end{array}$$

Solution of this logs of R/Q

Analogy with µ-RGE

increasing μ : less UV fluctuations in C and more in matrix elements

increasing R: more IR fluctuations in the matrix elements and less in C

OPE in MSR

$$M_{1}^{p/n}(Q) = \left[\pm C_{B}^{MSR}(Q, R_{0}) \left(\frac{1}{12} g_{A} + \frac{1}{36} a_{8} \right) + C_{0}^{MSR}(Q, R_{0}) \frac{\hat{a}_{0}}{9} \right]$$

$$- \frac{1}{Q^{2}} \left[\left(\pm \frac{2}{27} f_{3}^{MSR}(R_{0}) + \frac{2}{81} f_{8}^{MSR}(R_{0}) \right) \left[\alpha_{s}(Q) \right]^{\gamma_{0}^{ns}/(2\beta_{0})} + \frac{8}{81} f_{0}^{MSR}(R_{0}) \left[\alpha_{s}(Q) \right]^{\gamma_{0}^{s}/(2\beta_{0})} \right] + \frac{1}{Q^{4}} \left[\pm h_{B} + h_{0} \right]$$

$$M_1^B \equiv M_1^p(Q) - M_1^n(Q) = C_B^{\text{MSR}}(Q, R_0) \frac{g_A}{6} - \frac{4[\alpha_s(Q)]^{\gamma_0^{n_s}/(2\beta_0)}}{27Q^2} f_3^{\text{MSR}}(R_0) + \frac{1}{Q^4} h_B$$

Lets compare theory predictions from leading twist in MSR scheme and then fit for matrix elements at higher twist

Comparison with Data

Ellis-Jaffe sum rule at leading twist in MSR without a fit to power corrections (1 parameter)

Comparison with Data

Bjorken sum rule at leading twist in MSR without a fit to power corrections

Fits for power corrections

EJSR: MSR vs. MS

- we do 4-parameter fit to the global data for Ellis-Jaffe sum rule
- we take half the error as systematic and 100% correlation in systematic errors as our model for correlation matrix

MS

order	$\frac{\hat{a}_0}{9}$	$\frac{-8}{9} \left(\frac{\hat{f}_3}{12} + \frac{\hat{f}_8}{36} \right) (\text{GeV}^2)$	$\frac{-8}{81}\hat{f}_0 \text{ (GeV}^2)$	$h_B + h_0 \; (\text{GeV}^4)$	χ^2/dof
tree	0.0022	0.0526	-0.0713	0.0107	1.18
1 - loop	0.0117	0.0593	-0.0603	0.0081	1.05
2 - loop	0.0138	0.0350	-0.0109	0.0039	1.05
3 - loop	0.0137	-0.0893	0.1899	-0.0132	1.54

$MSR (R_0 = 1 \text{ GeV})$

 order	$\frac{\hat{a}_0}{9}$	$\frac{-8}{9} \left(\frac{f_3^{\text{MSR}}}{12} + \frac{f_8^{\text{MSR}}}{36} \right) (\text{GeV}^2)$	$\frac{-8}{81}f_0^{\mathrm{MSR}} \; (\mathrm{GeV}^2)$	$h_B + h_0 \; (\text{GeV}^4)$	χ^2/doj
 tree	0.0022	0.0526	-0.0713	0.0107	1.18
 NLL	0.0125	0.0399	-0.0713	0.0095	1.12
 NNLL	0.0164	0.0568	-0.0912	0.0048	0.96
 N^3LL	0.0156	0.0559	-0.0892	0.0050	0.97

Fits for power corrections

BjSR: MSR vs. MS

- we do 2-parameter fit with only JLab CLAS EG1b data for Bjorken sum rule: latest data, largest data set from single experiment, and spans both pert. and non. pert. regions
- 100% correlation in correlated systematic errors is assumed

MS

order	$\frac{-4}{27}\hat{f} (\text{GeV}^2)$	$h_B (\text{GeV}^4)$	χ^2/dof
tree	-0.1751	0.0884	0.41
1 - loop	-0.0455	0.0318	0.38
2 - loop	-0.0045	0.0182	0.40
3 - loop	0.0116	0.0160	0.41

 $MSR (R_0 = 1 \text{ GeV})$

order	$\frac{-4}{27}f^{\mathrm{MSR}} (\mathrm{GeV}^2)$	$h_B (\text{GeV}^4)$	χ^2/dof
tree	-0.1751	0.0884	0.41
NLL	-0.0857	0.0302	0.38
NNLL	-0.0281	-0.0083	0.45
N^3LL	-0.0355	-0.0034	0.43

large errors and large correlations!!

Fits for power corrections

Error matrix from expt. & theory errors

$$\frac{\hat{a}_{0}}{9} \quad \frac{-8}{9} \left(\frac{f_{3}^{\text{MSR}}}{12} + \frac{f_{8}^{\text{MSR}}}{36} \right) \quad \frac{-8}{81} f_{0}^{\text{MSR}} \qquad h_{B} + h_{0}$$

$$\begin{bmatrix}
6.33 \times 10^{-6} & 1.66 \times 10^{-7} & -1.21 \times 10^{-5} & 3.63 \times 10^{-6} \\
1.66 \times 10^{-7} & 7.13 \times 10^{-5} & -1.1 \times 10^{-4} & 1.31 \times 10^{-5} \\
-1.21 \times 10^{-5} & -1.1 \times 10^{-4} & 2.38 \times 10^{-4} & -3.91 \times 10^{-5} \\
3.63 \times 10^{-6} & 1.31 \times 10^{-5} & -3.91 \times 10^{-5} & 7.73 \times 10^{-6}
\end{bmatrix}$$

$$0 \quad \left(\begin{array}{c}
5.45 \times 10^{-3} & -3.04 \times 10^{-3} \\
-3.04 \times 10^{-3} & 1.79 \times 10^{-3} \\
-3.04 \times 10^{-3} & 1.79 \times 10^{-3}
\end{array}\right)$$

$$\frac{\hat{a}_0}{9} = 0.0156 \pm 0.0025 (\text{expt.})_{+0.0005}^{+0.0006} (\text{th.})$$

$$\frac{-4}{27}f_3^{\text{MSR}} = -0.036 \pm 0.07(\text{expt.})_{-0.01}^{+0.01}(\text{th.})$$

$$\frac{-8}{9} \left(\frac{1}{12} f_3^{\text{MSR}} + \frac{1}{36} f_8^{\text{MSR}} \right) = 0.056 \pm 0.008 (\text{expt.})_{-0.005}^{+0.009} (\text{th.})$$

$$h_B + h_0 = 0.005 \pm 0.003 (\text{expt.})_{-0.001}^{+0.006} (\text{th.})$$

$$\frac{-8}{81} f_0^{\text{MSR}} = -0.089 \pm 0.015 (\text{expt.})_{-0.027}^{+0.011} (\text{th.})$$

$$h_{\rm B} = -0.003 \pm 0.04 ({\rm expt.})^{+0.005}_{-0.003} ({\rm th.})$$

all f_i are shown for $R_0 = 1$ GeV

EJSR in MSR including power corrections

BjSR in MSR including power corrections

here, theory errors are smaller than experimental

Fitted power corrections run as expected.

Same is true in EJSR

Conclusions

- Obtained stable OPE in new MSR scheme
- Resummation of logs of Q/R using the R-RGE
- Obtained reliable fits for higher twist matrix elements